Flexible Data Access Framework for Neuroinformatic Databases

D. MacFarlanel, X. Lecours-Boucheri, R. Abou-Haider1, D. Lo!, M. Legault?, L. Macintryel, Samir Das1, A.C. Evans1

"McGill Center for Integrative Neuroscience, Montreal Neurological Institute, McGill University, Montreal, QC, Canada

2Montreal Neurological Institute, McGill University, Montréal, QC, Canada

MCGILL CENTRE
for INTEGRATIVE
= NEUROSCIENCE

Introduction

Large databasing frameworks, such as LORIST have a number of
features?34 across many modules to support neuroimaging studies.
Maintaining modules becomes increasingly difficult with the addition
each of new feature or module. LORIS created a Data Access
Framework that simplifies gathering and filtering data in a consistent
manner to address this difficulty.

Prior to the Data Access Framework, LORIS modules accessed data
on an ad-hoc basis by writing bespoke SQL queries generated from
object oriented base classes. Features such as site-based
permissions required updating every query across all LORIS modules
to filter user-restricted data. Rather than object-oriented principles, the
Data Access Framework provides a high level interface inspired by
functional programming and considers data presentation to be a pure
function of the user and the data itself. Actions are defined In
immutable terms®, while lazy evaluation® ensures efficiency of data
retrieval. This has unified the data access in LORIS and resulted in the
ability to easily add more granularity to permissions.

Methods

The Data Access Framework is modelled in terms of “data
provisioners”, responsible for retrieving data from a data source
and returning a data model.

The Data Access Framework takes a high level view of “data” and
conceptually separates the filtering from the retrieval of data. This
allows the same framework to be used for different data sources

accessed by LORIS while using the same framework for filtering and
modifying the data representation presented to the user.

Architecture

The framework is implemented in terms of three core concepts:

F (Data Instances)

PHP models representing
a certain type of data are
returned by data
provisioners.

Must be serializable to
JSON

{}

Vo

Implement an interface
which, when given a user
accessing the data and a
Datalnstance, decide
whether or nor the
Datalnstance should be
filtered out of the data set
returned to the user.

>

i Mappers)

Implement an interface
that returns a derived
Datalnstance when given
a User + Data Instance

M
b 4

Coser)

=) CouchDB

relax
4)
Data Provisioner
File System \ y

My m

Data can be retrieved from different sources using a common interface

References

1. Das et al, 2011. LORIS: a web-based data management system for
multi-center studies. Frontiers in Neuroinformatics (5:37)

2. MacFarlane et al. Enhanced Data Querying For Neuroinformatics
Databases. OHBM 2014

3. Mohadez et al. Web-based Imaging Uploader For LORIS. OHBM
2015

4. Rogers et al. LORIS Neuroinformatics Platform for Imaging
Genetics. OHBM 2015

5. P. Helland. Immutability changes everything. CACM Jan. 2016 (DOI
10.1145/2844112)

6. B. W. Lampson. Lazy and speculative execution in computer
systems. ICFP 2018 (DOI 10.1145/1411203.1411205)

Data provisioners are responsible for retrieving the data, and applying
relevant maps and filters. Standard filters included in LORIS can be
applied to implement consistent filtering across data models. For
instance, the UserSiteMatch filter checks whether the model for the
Datalnstance that it is given has a getCenterlD method. If so, it will
filter out Datalnstances for users which are not part of that centre. The
filter can be applied regardless of the source(s) that the data
provisioner used to build the data model (SQL, NoSQL, or anywhere
else) without knowledge of the underlying source, so long as the PHP
data model for the Datalnstance has a getCenterlD() method.

™~ *
b 4

=

)

JSON Format

[Data Provisionerj

Data Derived From
Mapping and Filtering
Data Source

(Data Source)

Data provisioners map and filter data based on the data and the user
accessing it.

Results

An implementation of this framework in LORIS has been done
including the UserSiteMatch filter described in the architecture section
and an anonymization mapper in the DICOM Archive module.

Benchmarking showed performance as comparable to the previous
direct SQL implementation with less variability across users, while
code re-use is improved by writing the filtering logic in higher level
classes that deal with data models, not directly with the database.

Conclusion

We were able to improve the reliability and robustness of the data
access in LORIS by implementing a novel framework inspired by
functional, rather than object oriented programming concepts.

In future work, the framework will be used to consistently implement
more granular permissions such as project, cohort, or Imaging
modality specific permissions consistently throughout LORIS.

